Divergence and Curl of a Vector Function

- This unit is based on Section 9.7, Chapter 9.
- All assigned readings and exercises are from the textbook
- Objectives:

Make certain that you can define, and use in context, the terms, concepts and formulas listed below:

1. find the divergence and curl of a vector field.
2. understand the physical interpretations of the Divergence and Curl.
3. solve practical problems using the curl and divergence.

- Reading: Read Section 9.7, pages 483-487.
- Exercises: Complete problems
- Prerequisites: Before starting this Section you should . . . \checkmark be familiar with the concept of partial differentiation
\checkmark be familiar with vector dot and cross multiplications
\checkmark be familiar with 3D coordinate system

Differentiation of vector fields

- Example of a vector field: Suppose fluid moves down a pipe, a river flows, or the air circulates in a certain pattern. The velocity can be different at different points and may be at different time.
- The velocity vector \mathbf{F} gives the direction of flow and speed of flow at every point.
- Applications of Vector Fields:
- Mechanics
- Electric and Magnetic fields
- Fluids motions
- Heat transfer
- There are two kinds of differentiation of a vector field $\mathbf{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})$:

1. divergence $(\operatorname{div} \mathbf{F}=\nabla . \mathbf{F})$ and
2. $\operatorname{curl}(\operatorname{curl} \mathbf{F}=\nabla \mathbf{x F})$

Examples of Vector Fields

(a) Airflow around an airplane wing

(d) Lines of force around two equal positive charges

The Divergence of a Vector Field

- Consider the vector fields

Vector function with two variable:

$$
\overrightarrow{\mathbf{F}}(x, y)=P(x, y) \hat{\mathbf{i}}+Q(x, y) \hat{\mathbf{j}}
$$

Vector function with three variable:

$$
\overrightarrow{\mathbf{F}}(x, y, z)=P(x, y, z) \hat{\mathbf{i}}+Q(x, y, z) \hat{\mathbf{j}}+R(x, y, z) \hat{\mathbf{k}}
$$

- We define the divergence of \mathbf{F}

$$
\operatorname{Div} \vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

- In terms of the differential operator ∇, the divergence of \mathbf{F}

$$
\operatorname{Div} \vec{F}=\nabla \bullet \vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

- A key point: \mathbf{F} is a vector and the divergence of \mathbf{F} is a scalar.

Example: $\quad \vec{F}=4 x y \hat{i}+\left(2 x^{2}+2 y z\right) \hat{j}+3\left(z^{2}+y^{2}\right) \hat{k}$, Find $\nabla \cdot \vec{F}$

Divergence

- Divergence is the outflow of flux from a small closed surface area (per unit volume) as volume shrinks to zero.

- Air leaving a punctured tire: Divergence is positive, as closed surface (tire) exhibits net outflow
- The divergence measures sources and drains of flow:

$\nabla \cdot \mathbf{F}(@ P)>0 \Rightarrow$ source
$\nabla \cdot \mathbf{F}(@ P)<0 \Rightarrow$ sink
$\nabla \cdot \mathbf{F}(@ P)=0 \Rightarrow$ no source or sink
(a) $\operatorname{div} \mathbf{F}(P)>0 ; P$ a source

(b) $\operatorname{div} \mathbf{F}(P)<0 ; P$ a sink

Physical Interpretation of the Divergence

- Consider a vector field \mathbf{F} that represents a fluid velocity:

The divergence of \mathbf{F} at a point in a fluid is a measure of the rate at which the fluid is flowing away from or towards that point.

- A positive divergence is indicating a flow away from the point.
- Physically divergence means that either the fluid is expanding or that fluid is being supplied by a source external to the field.
- The lines of flow diverge from a source and converge to a sink.
- If there is no gain or loss of fluid anywhere then $\operatorname{div} \mathbf{F}=0$. Such a vector field is said to be solenoidal.
- The divergence also enters electrical engineering topics such as electric and magnetic fields:
- For a magnetic field: $\nabla \cdot \mathbf{B}=0$, that is there are no sources or sinks of magnetic field, a solenoidal filed.
- For an electric field: $\nabla \cdot \mathbf{E}=\rho / \varepsilon$, that is there are sources of electric field..

(a) $\operatorname{div} \mathbf{F}(P)>0 ; P$ a source

(b) $\operatorname{div} \mathbf{F}(P)<0 ; P$ a sink

The Curl of a Vector Field

- Consider the vector fields

$$
\overrightarrow{\mathbf{F}}(x, y, z)=P(x, y, z) \hat{\mathbf{i}}+Q(x, y, z) \hat{\mathbf{j}}+R(x, y, z) \hat{\mathbf{k}}
$$

- The curl of \mathbf{F} is another vector field defined as:

$$
\operatorname{curl} \overrightarrow{\mathbf{F}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|
$$

- In terms of the differential operator ∇, the curl of \mathbf{F}

$$
\operatorname{Curl} \overrightarrow{\mathbf{F}}=\nabla \times \overrightarrow{\mathbf{F}}=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \hat{\mathbf{i}}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \hat{\mathbf{j}}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \hat{\mathbf{k}}
$$

- A key point: \mathbf{F} is a vector and the curl of \mathbf{F} is a vector.

Example: $\vec{F}=4 x y \hat{i}+\left(2 x^{2}+2 y z\right) \hat{j}+3\left(z^{2}+y^{2}\right) \hat{k}$, Find $\nabla \times \vec{F}$

Physical Interpretation of the Curl

- Consider a vector field \mathbf{F} that represents a fluid velocity:

The curl of \mathbf{F} at a point in a fluid is a measure of the rotation of the fluid.

- If there is no rotation of fluid anywhere then $\nabla \times \mathbf{F}=0$. Such a vector field is said to be irrotational or conservative.
- For a 2D flow with \mathbf{F} represents the fluid velocity, $\nabla \times \mathbf{F}$ is perpendicular to the motion and represents the direction of axis of rotation.

Related Course:

ENGR361

(a) Irrotational flow

(b) Rotational flow

- The curl also enters electrical engineering topics such as electric and magnetic fields:
$>$ A magnetic field (denoted by \mathbf{H}) has the property $\nabla \times \mathbf{H}=\mathbf{J}$.
$>$ An electrostatic field (denoted by \mathbf{E}) has the property $\nabla \times \mathbf{E}=0$, an irrotational (conservative) field. Related Course: Elec 251/351

Further properties of the vector differential operator ∇

1) $\operatorname{div}[\operatorname{grad} f(x, y, z)]=\nabla \bullet \nabla f=\nabla^{2} f$;

$$
=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

∇^{2} is called the
Laplacian operator
2) $\nabla[f(r) g(r)]=g \nabla f+f \nabla g$
3) $\nabla \bullet[f(r) \vec{F}(r)]=f \nabla \bullet \vec{F}+\vec{F} \bullet \nabla f$
4) $\nabla \times[f(r) \vec{F}(r)]=f \nabla \times \vec{F}+(\nabla f) \times \vec{F}$
5) $\nabla \bullet[\vec{F}(r) \times \vec{G}(r)]=\vec{G} \bullet(\nabla \times \vec{F})-\vec{F} \bullet(\nabla \times \vec{G})$
6) $\operatorname{div}[\operatorname{curl} \vec{F}(r)]=\nabla \bullet(\nabla \times \vec{F})=0$
7) $\operatorname{curl}[\operatorname{grad} f(r)]=\nabla \times(\nabla f)=0$

Verification Examples: $f=x^{2} y^{2} z^{3} ; \quad \vec{F}=\left\langle x^{2} y, x y^{2} z,-y z^{2}\right\rangle$

Vector Calculus and Heat Transfer

- Consider a solid material with density ρ, heat capacity c, the temperature distribution $T(x, y, z, t)$ and heat flux vector q.
- conservation of heat energy

$$
\frac{\partial}{\partial t}(\rho c T)+\nabla \cdot \mathbf{q}=0
$$

- In many cases the heat flux is given by Fick's law

$$
\mathbf{q}=-k \nabla T
$$

- Which results in heat equation:

$$
\frac{\partial T}{\partial t}=\kappa \nabla^{2} T
$$

- Related Course: MECH352

Vector Calculus and Fluid Mechanics

- Conservation of Mass:

Let
ρ be the fluid density and
v be the fluid velocity.
Conservation of mass in a volume gives

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

Which can be written as

$$
\frac{\partial \rho}{\partial t}+\rho \nabla \cdot \mathbf{v}+\mathbf{v} \cdot \nabla \rho=0
$$

- Related Course: ENGR361

Vector Calculus and Electromagnetics

- Maxwell equations in free space
- Maxwell Equations describe the transmission of information (internet data, TV/radio program, phone,...) using wireless communication.

$$
\begin{array}{ll}
\nabla \cdot \mathbf{E}=\rho_{v} / \varepsilon_{0}, & \nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial t \\
\nabla \cdot \mathbf{B}=0, & \nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\varepsilon_{0} \partial \mathbf{E} / \partial t
\end{array}
$$

- Solutions of this equations are essential for the analysis, design and advancement of wireless devices and system, high-speed electronics, microwave imaging, remote sensing, ...etc.
- Related Courses: ELEC251, ELEC351, ELEC353, ELEC453, ELEC 456, ELEC 457

Magneto-static Field Example

Magneto-static Field is an example of rotational field

$$
\nabla \times \mathbf{B}=\mathbf{J}
$$

$\nabla \times \mathbf{B}=0$, outside the cable
$\nabla \times \mathbf{B} \neq 0$, inside the cable

